Processing math: 0%

Chapter 2 - Convergences and error estimates - Exercises

Exercise 2.1 (central limit theorem with various rates)
Let (X_m)_{m\geq 1} be a sequence of i.i.d. random variables having the symmetric Pareto distribution with parameter \alpha>0, whose density is 
\frac{\alpha}{2|z|^{\alpha+1}} 1_{|z|\geq 1}.
Set \overline{X}_M:=\frac{1}{M}\sum_{m=1}^M  X_m.
  1. For \alpha>1, justify the a.s. convergence of \overline{X}_M to 0 as M\to +\infty.
  2. For \alpha>2, prove a central limit theorem for \overline{X}_M at rate \sqrt M.
  3. For \alpha\in (1,2], determine the rate u_M\to +\infty such that u_M \overline{X}_M converges in distribution to a limit.
Hint: to distinguish the cases \alpha=2 and \alpha\in (1,2), use the Levy criterion (Theorem A.1.3) with the representation of the characteristic function  \mathbb{E}(e^{iu X})=1 + \alpha |u|^\alpha\int_{|u|}^{+\infty} \frac{\cos(t)-1}{t^{\alpha+1}} {\mathrm d}t. 

Exercise 2.2 (
substitution method)
We aim at estimating the Laplace transform \phi(u):=\mathbb{E}(e^{uX})=e^{\sigma^2u^2/2} of a Gaussian random variable X\overset d= {\cal N}(0,\sigma^2), using a sample of size M of i.i.d. copies of X. The parameter \sigma^2 is unknown.
Which procedure is the most accurate?
  1.  Computing the empirical mean \phi_{1,M}(u):= \frac{ 1 }{M }\sum_{m=1}^M e^{u X_m};

    or
  2. Estimating \sigma^2 by the empirical variance \sigma^2_M, then estimating \phi(u) by \phi_{2,M}(u):= e^{\frac{ u^2 }{2 }\sigma^2_M}.
We will compare  estimators using related confidence intervals.
Solution.

Exercise 2.3 (central limit theorem, substitution method)
Consider  the setting of Proposition 2.2.6, with the estimation of  \max(\mathbb{E}(X),a). Let \overline X_{1,M}=\frac{ 2 }{ M}\sum_{m=1}^{M/2} X_i and \overline X_{2,M}=\frac{ 2 }{ M}\sum_{m=M/2+1}^{M} X_i. Set
\overline f_M=\max(\frac{ 1 }{ M}\sum_{m=1}^{M} X_i,a),\qquad  \underline f_M=\mathbb{1}_{\overline X_{1,M}\geq a} \overline X_{2,M}+\mathbb{1}_{\overline X_{1,M}< a} a. 
  1. Assume  a> \mathbb{E}(X). Prove that  both  the upper estimator \overline f_M and the lower estimator  \underline f_M converge to \max(\mathbb{E}(X),a) in L_1 at the rate M.
  2. Assume  a< \mathbb{E}(X). Establish a central limit theorem at rate \sqrt M for  \overline f_M-\max(\mathbb{E}(X),a),  for \underline f_M-\max(\mathbb{E}(X),a), and for the pair (\overline f_M-\max(\mathbb{E}(X),a),\underline f_M-\max(\mathbb{E}(X),a)).
  3. Investigate the case a=\mathbb{E}(X).
Exercise 2.4 (sensitivity formulas, exponential distribution)
Let Y\overset d={\cal E}xp(\lambda) with \lambda > 0 and set F (\lambda) = \mathbb{E}(f (Y)) for a given bounded function  f.
  1. Use the likelihood ratio method to represent F' as an expectation.
  2.  Use the pathwise differentiation method to get another representation for smooth f (use the formula X=-\frac{1}{\lambda}\log(U)).
  3.  By integrating by parts, show that both formulas coincide.

Exercise 2.5 (sensitivity formulas, multidimensional Gaussian distribution)
In dimension 1, Example 2.2.11 gives, for Y^{m,\sigma}\overset d= {\cal N}(m,\sigma^2),
\begin{align*} \partial_m \mathbb{E}(f(Y^{m,\sigma}))&=\mathbb{E}\Big(f(Y^{m,\sigma})\frac{(Y^{m,\sigma}-m)}{\sigma^2} \Big),\\ \partial_\sigma \mathbb{E}(f(Y^{m,\sigma}))&=\mathbb{E}\Big(f(Y^{m,\sigma}){\frac1 \sigma}\big[\frac{(Y^{m,\sigma}-m)^2}{\sigma^2}-1\big] \Big). \end{align*}
Extend this to the multidimensional case for the sensitivity with respect to the mean \mathbb{E}(Y) and to the covariance matrix \mathbb{E}(Y Y^*) (assumed to be invertible).
Hint: for the sensitivity w.r.t. elements of \mathbb{E}(Y Y^*), one has to perturb the matrix \mathbb{E}(Y Y^*) in a symmetric way to keep it symmetric.

Exercise 2.6 (sensitivity formulas, resimulation method)
We aim at illustrating the benefit of using Common Random Numbers (CRN) in the evaluation of \partial_\theta \mathbb{E}(f(Y^\theta)) and the impact of the smoothness of f on the estimator variance. We consider the Gaussian model Y\overset d={\cal N}(\theta,1)
  1. Denote by (G_1,\dots,G_M,G'_1,\dots,G'_M) i.i.d. copies of {\cal N}(0,1) and consider a smooth function f, bounded with bounded derivatives. Compute the variance of the estimator with different random numbers \frac 1M\sum_{m=1}^M \frac{f(\theta+\varepsilon+G_m)-f(\theta-\varepsilon+G'_m)}{2\varepsilon} as \varepsilon\to0 (M fixed). 
  2.  Compare it with that of the CRN estimator \frac 1M\sum_{m=1}^M \frac{f(\theta+\varepsilon+G_m)-f(\theta-\varepsilon+G_m)}{2\varepsilon}. 
  3. Analyze the variance of the CRN estimator when f(x)=\mathbf{1}_{x\geq 0}. What is its dependency w.r.t. \varepsilon\to0?
Write a simulation program illustrating these features.

Exercise 2.7 (concentration inequality, maximum of Gaussian variables)
Corollary 2.4.1 states that if Y is a random vector in \mathbb{R}^d with distribution \mu satisfies a logarithmic Sobolev inequality with constant c_\mu>0, then for any Lipschitz function f:\mathbb{R}^d\mapsto \mathbb{R}, we have
\mathbf{P}(|f(Y)-\mathbf{E}(f(Y))|>\varepsilon)\leq 2\exp\left(-\frac{ \varepsilon^2 }{c_\mu |f|_{\rm Lip}^2}\right), \qquad \forall \varepsilon\geq 0.
  1. Use the above concentration inequality in the Gaussian case to establish the Borell inequality (1975): for any centered d-dimensional Gaussian vector Y=(Y_1,\dots,Y_d), we have \mathbb{P}\left(|\max_{1\leq i\leq d} Y_i-\mathbb{E}(\max_{1\leq i\leq d} Y_i)|>\varepsilon\right)\leq 2\exp\Big(-\frac{ \varepsilon^2 }{2\sigma^2}\Big), \qquad \forall \varepsilon\geq 0 where \sigma^2=\max_{1\leq i\leq d}\mathbb{E}(Y^2_i) (Observe that the constants do not depend much on the dimension, thus passing to infinite dimension is possible).
    Hint: first assume that (Y_i)_i are i.i.d. standard Gaussian random variables. To prove  the general case, use the representation of Proposition 1.4.1.
  2. We consider the case d\to+\infty and assume that \sigma^2=\max_{1\leq i\leq d}\mathbb{E}(Y^2_i) is bounded as d\to+\infty. Assuming that \mathbb{E}(\max_{1\leq i\leq d} Y_i)\to+\infty, and deduce that \frac{\max_{1\leq i\leq d} Y_i  }{\mathbb{E}(\max_{1\leq i\leq d} Y_i)}\underset{d\to+\infty}{\overset{{\rm Prob.}}\longrightarrow 1}.
Application: in the standard i.i.d. case, since \mathbb{E}(\max_{1\leq i\leq d} Y_i)\sim\sqrt{2\log(d)} as d\to+\infty (see [J. Galambos. The Asymptotic Theory of Extreme Order Statistics. R.E. Kreiger, Malabar, FL, 1987]), we obtain a nice deterministic equivalent (in probability) of \max_{1\leq i\leq d} Y_i.
Solution.



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

No comments:

Post a Comment